
Manual for SU-statemodeler

Version 2.5/2.1.4

 Summary:
 graphical editor for UML-statecharts
 code-generator for Java, C++ and C#
 available as a plug-in for Eclipse
 integrated recognition of errors
 facilitates modularization and reuse
 easy to use

Contents
 1 General..4

 1.1 Overview..4
 1.2 License...4
 1.3 Versions..4
 1.4 Contact...4

 2 Basics...5
 2.1 States..5
 2.2 Pseudo states..5
 2.3 Transitions..5

 2.3.1 Regular transitions...5
 2.3.2 Internal transitions..6
 2.3.3 Trigger text...6

 2.4 Activities and actions...7
 2.4.1 General...7
 2.4.2 Transition behavior..7

 2.5 States..8
 2.5.1 Naming rules..8
 2.5.2 Regions...8

 2.6 Entry and exit points..9
 2.7 Model modularization and reuse..10

 3 Editor...12
 3.1 Overview..12
 3.2 Using the editor..13

 3.2.1 Context menus..13
 3.2.2 Creating objects..13
 3.2.3 Resizing objects...13
 3.2.4 Moving objects...14
 3.2.5 Editing text...14
 3.2.6 Importing models...14
 3.2.7 Complex states...15
 3.2.8 Transitions..15

 3.2.8.1 Create transitions..15
 3.2.8.2 Edit transitions..16

 3.2.9 Deleting objects..17
 3.2.10 Copy and paste...18
 3.2.11 Making changes undone...20
 3.2.12 Comments..20

 3.3 Expressions..20
 3.3.1 General...20
 3.3.2 Operators..21
 3.3.3 Data types...21

 3.4 Error recognition..21
 3.4.1 Syntax errors..21
 3.4.2 Logical errors...22

 3.5 Localization...23
 4 Code-generator..24

 4.1 Overview..24
 4.2 Example model..24

SU-statemodeler 2.5/2.1.4
Christian Pauli

2

 4.3 General characteristics...24
 4.3.1 Variables and types...25
 4.3.2 Functions and Activities...26
 4.3.3 Listening to changes...27

 4.4 Java..27
 4.4.1 General...27
 4.4.2 Implementing functions...27
 4.4.3 Persisting states..28
 4.4.4 Implementing actions...28

 4.5 C++..28
 4.5.1 General...28
 4.5.2 Type system..29
 4.5.3 Object comparisons..30
 4.5.4 Implementing functions...31
 4.5.5 Implementing actions...32
 4.5.6 Compiling the code..32

 4.5.6.1 Compiling on Windows..32
 4.5.6.2 Compiling on Linux...32

 4.5.7 Code variants..33
 4.5.8 Arduino generator..33

 4.6 C#...33
 4.6.1 General...33
 4.6.2 Implementing functions...33
 4.6.3 Implementing actions...34

 5 Products...35
 5.1 Standalone editor...35

 5.1.1 Overview..35
 5.1.2 System requirements..36
 5.1.3 Obtaining the software...36

 5.2 Eclipse plug-in...36
 5.2.1 Overview..36
 5.2.2 Model files...37

 5.2.2.1 Creating a model file..37
 5.2.2.2 Opening a model file..37

 5.2.3 Color preferences...37
 5.2.4 Exporting images...38
 5.2.5 Generating code...39
 5.2.6 Error view..41
 5.2.7 Model properties..41
 5.2.8 Obtaining help..42
 5.2.9 Installing the plug-in..42

SU-statemodeler 2.5/2.1.4
Christian Pauli

3

 1 General

 1.1 Overview

S(imple) U(ML)-statemodeler is an application for the development of state-based software
systems. The application consists of a graphical editor for UML-statecharts and a code-generator.
With the editor every kind of state-based system can be modeled. These models can be compiled
into code of several programming languages. To use SU-statemodeler, no programming skills are
required. The software is available as standalone editor and as plug-in for Eclipse.

This manual describes how to operate SU-statemodeler. Essentially this includes using the editor
and dealing with the generated code.

 1.2 License

All SU-statemodeler-products (→ 5) and this manual are published under the following license:

This software and the related documentation have been created by
Christian Pauli and are protected by copyright.
Copyright holder is Christian Pauli, 2023.

The use of the software and related documentation are permitted for
private and commercial purposes, the provision by the creator is free of
charge. The redistribution of the software and its related documentation
requires express written consent of the copyright holder

The use of the software and its related documentation is at your own
risk. The creator provides no guarantee for the correctness, completeness
or quality of the software and its related documentation. The creator
does not guarantee that the software and its related documentation are
fit for a particular purpose.
The creator is not liable for damages, resulting from the use or
distribution of the software or its related documentation.

 1.3 Versions

The version numbers in this manual always apply to the standalone editor and the plug-in for
Eclipse. See also chapter 5.

 1.4 Contact

The author and distributor of the software is Christian Pauli. He can be contacted under
christian.pauli@christianpauli.de.

SU-statemodeler 2.5/2.1.4
Christian Pauli

4

mailto:pauli.christian@gmail.com

 2 Basics
 2.1 States

A state-based software system, also called state machine, has clearly defined and finitely many
different states. If a state arises then it is active and determines the behavior of the software system.
A state can have subsidiary states which are called child states. According to this a state with child
states is the parent state of these child states. Two states that have the same parent state are called
sibling states. If a state is active then its parent state is active, too. If a state is not active then its
child states are not active, too.

 2.2 Pseudo states

Pseudo states are no real states, because they only influence the behavior of transitions (→ 2.3).
Pseudo states are:

 decision

 join

 fork

 history state

 initial state

 end state

A decision influences the behavior during a transition by defining conditions that determine the new
target state of the transition.

A fork can define more than one target state of a transition that are active at the same time. A join
does the contrary: it determines one target state when a transition has more than one source state.

A history state is a the state which had been active before its parent state became inactive.

An initial state activates the first state of a state machine and is the origin of the behavior of the
system. Every parent state can only have one initial state. There should always exist a transition
originating from an initial state.

If a state machine takes its end state, there will be no more transitions. No transition can originate
from an end state. Every parent state can have one or more end states.

While a state can be active for a certain period, a pseudo state is principally never active. From
pseudo states only auto-transition can start from.

 2.3 Transitions

 2.3.1 Regular transitions

A (regular) transition is basically the change from one state to another. It always has a source state
and a target state. Both can be the same. The source state is left and becomes inactive. The target
state is entered and becomes active. An external transition is triggered by an event, additionally a
condition can influence the transition: if the condition is not true, the change of the state does not
take place. At last a transition can execute an action. An external transition can only be triggered if
the source state is active. An external transition without an event as trigger is called auto-
transition. An auto-transition does only happen if no child state within the source state is active, the
source state itself is active and all activities started by the source state are finished. If source state
and target state are the same then the state is deactivated and activated again. Transitions are used to
change the behavior of the state machine.

SU-statemodeler 2.5/2.1.4
Christian Pauli

5

A transition must not have an initial state as target state. Other pseudo state can be target state and
source state of a transition.

 2.3.2 Internal transitions

An internal transition is always triggered by an event and can be influenced by a condition. Never
leading to a state change an internal transition only executes actions. It is used to trigger an action
but not to change the state of the system.

There are three kinds of internal transitions:

 entry

 exit

 do

The event entry is triggered at activating, the event exit is triggered at deactivating a state. In
addition an action can be executed. The event do is triggered after entry and before exit and
can only be used to start activities (→ 2.4).

 2.3.3 Trigger text

The trigger text consists of three parts:

1. event

2. condition

3. action

These parts appear in the following order:

event [condition] / action

All of these parts are optional. For the trigger the same rules as for state names apply. The condition
is a logical expression. The action can be a function call or an expression (e. g. g:=7). Syntax rules
for expressions are described in detail in chapter 2.5.1 .

In general all parts may appear with a transition. But with specific source or target states, not all of
the mentioned parts are allowed. The following enumeration shows the restrictions for certain
states.

source states only allowed

decision condition

entry or exit point action

fork -

join action

target states

join -

SU-statemodeler 2.5/2.1.4
Christian Pauli

6

 2.4 Activities and actions

 2.4.1 General

An action is an atomic, non-interruptible process. An example for an action is a function call. An
action is either completely or not executed. An activity consists of several actions. It is executed by
executing all its actions sequentially. An activity can be interrupted. This means that the execution is
aborted before all actions have been executed. This is only possible after or before an action is
executed. An exception are interruptible waiting actions.

An activity can contain cycles of actions. Action within these cycles are executed until the activity
is interrupted. Thus endless activities can be created.

Activities are used in statecharts to model parallel processes. An activity can only be executed if the
state is active. If the state becomes inactive the activity is interrupted. Activities are started by
internal transitions triggered by the event do. An activity has a name. For this name the same
syntax rules apply as for state names. There can be more than one transition triggered by do in a
state.

 2.4.2 Transition behavior

A transition from a state that has been executing activities tries to finish these activities by
interrupting them. Afterward the transition must wait until all activities have actually been finished.
This might take an infinite amount of time because the currently executed actions cannot be aborted
immediately. Only interruptible actions can be interrupted immediately. If the implementation of an
action is faulty this can lead to deadlocks.

SU-statemodeler 2.5/2.1.4
Christian Pauli

7

Picture 1: activity

Picture 2: cyclic activity

Picture 3: activity

 2.5 States

A state determines the behavior of a state machine.

 2.5.1 Naming rules

It must have a unique name (within the editor window) and must not be empty. A new state gets a
provisional name by SU-statemodeler. This name can be changed by the user. The following syntax
rule must apply for state names:

[_a-zA-Z0-9]+

Examples for correct names:

State_1

Device_ON

device_off

_new_State

Examples for incorrect names:

state-1 (special character)

new state (blank)

Gerät_an (umlaut)

Device§on (special character)

 2.5.2 Regions

By default only one child state is active within a parent state. If more than one child state is to be
active, then the parent state must have more than one region. In every region one state can be active.
Thus, complex states can be modeled. In SU-statemodeler regions are displayed as areas divided by
dotted lines (→ Picture 4). Every region can have one initial state.

SU-statemodeler 2.5/2.1.4
Christian Pauli

8

 2.6 Entry and exit points

A state can have multiple entry and exit points. An entry point can be the target of a transition with
a source state “outside” of the state. An entry point forwards the transition to a child state. The state
itself is activated. The exit point is the counterpart of the entry point. It is the target of a transition
whose source state is a child state of the state. It forwards the transition to a state “outside” of the
state. The state itself is deactivated.

The following pictures show an example for an entry and exit point in SU-statemodeler.

The transition pointing to entry is forwarded to Childstate1, a child state of State_3. Vice
versa the transition coming from Childstate_1 pointing to exit is forwarded to State_2.

SU-statemodeler 2.5/2.1.4
Christian Pauli

9

Picture 5: external view State_3

Picture 4: regions

 2.7 Model modularization and reuse

Importing models facilitates the reuse of models and can be used to divide them into separated
modules.

To import a model SU-statemodeler provides the import state. By this state another model (the
imported model) is embedded into the current model (the importing model). The imported model
becomes a sub-model of the importing model. Thus it is possible to create nested models.

When importing a model directly or indirectly into itself an import cycle occurs. Through import
cycles indefinite state machines can be modeled. Picture 7 shows such an import cycle, where
model A is indirectly imported into itself.

SU-statemodeler 2.5/2.1.4
Christian Pauli

10

Picture 6: internal view State_3

SU-statemodeler 2.5/2.1.4
Christian Pauli

11

Picture 7: import cycle

 3 Editor
 3.1 Overview

With the graphical editor of SU-statemodeler state machines can be modeled with the UML-
notation. The editor saves the models as XML-files (file ending smf). These files are called model
files. The editor is used via mouse and keyboard. Particular user operations can be made undone.
The editor recognizes syntax errors and certain logical errors and displays them.

Nearly everything in the editor is a state. The modeled system itself is a state with child states.

A state is displayed as a rectangle with round corners. Picture 8 shows the supported state types:

1. normal state

2. complex state

3. imported model

4. initial state

5. end state

6. join / fork

7. decision

8. shallow history

9. deep history

A transition is displayed as an arrow, the head points to the target state. A text field shows the

SU-statemodeler 2.5/2.1.4
Christian Pauli

12

states

pseudo-states

Picture 8: editor window with states

2.

4.

5.

6.

7.

8.

9.

3.

1.

trigger text. In case of syntax errors the trigger text is colored red.

 3.2 Using the editor

With the editor the user is creating UML-statecharts. In what follows all components of a statechart
are denoted as objects.

 3.2.1 Context menus

To nearly every object in the editor a context menu is available. Via this menu all relevant
operations for an object (e. g. a state) can be invoked. The context menu is opened through a single
right click on the object. The background has a context menu, too. Thus a context menu can be
opened nearly anywhere in the editor. Picture 9 shows the context menu available at the background
(indeed also a state).

 3.2.2 Creating objects

To create an object, e. g. a new state, the user has to open the context menu and invoke the
according menu item (e. g. new state).

 3.2.3 Resizing objects

Nearly every object can be resized. This does not influence the semantic of the statechart, but only
the visual design.

To resize an object the user has to click the blue area normally shown in the right bottom corner of
an object and drag the mouse as desired. The objects changes its size corresponding to the mouse
motion unless there are restrictions concerning the size. Such a restriction are imposed by child

SU-statemodeler 2.5/2.1.4
Christian Pauli

13

Picture 9: context menu

states: a parent state must always be large enough to include its child states (→ picture 10).

 3.2.4 Moving objects

All objects can be moved. This does not influence the semantic of the statechart, but only the visual
design. To move an object the user has to click and drag it (with the mouse). If a state is moved all
of its child states and transitions are moved, too. A state can be move over state and region
boundaries.

 3.2.5 Editing text

Everywhere in the editor text fields are visible, e. g. for names. To edit a text field the user has to
make a double-click on it. Thus the text field is made editable and the text can be changed. Due to
the size the new text needs to be fully displayed the size of the corresponding object might change.

Furthermore detached text fields can be moved like other objects.

 3.2.6 Importing models

To import a model an import state is needed. An import state is created by choosing the context
menu item import state machine.

The head of an import state is annotated with <<import>>, the name of the state can be changed.
Then the user has to specify the model file to import. This is done via the context menu of the
import state (→ picture 11). After choosing the menu item specify file a file dialog opens and the
user can choose a model file. If this is not done the import state behaves similar to an end state. In
addition to that during code generation an error will be shown.

SU-statemodeler 2.5/2.1.4
Christian Pauli

14

Picture 10: resizing an object

The path to the file of the imported model is shown as a relative path. The file can be changed by
repeating the last steps or be deleted by invoking discard file in the context menu.

 3.2.7 Complex states

Semantically a complex state refers to a regular state. In SU-statemodeler a complex state is a state
whose child states are not visible in the same editor window. This is for keeping the editor window
as neat as possible and facilitates the creation of models with many components. The child states of
a complex state are shown in a separated editor window, which is denoted as internal view. The
window where the complex state itself is shown is the external view. The change between internal
and external view is done via context menu or simply a double-click.

An initial state determines which child state is activated when a complex state becomes active.
Furthermore entry and exit states can be attached to a complex state.

 3.2.8 Transitions

 3.2.8.1 Create transitions

A new transition is created via the context menu of the source state (step 1). Afterwards an arrow is
displayed that moves with the mouse cursor.

SU-statemodeler 2.5/2.1.4
Christian Pauli

15

Picture 12: create new transition (step 1)

Picture 11: import a model

The user has to click on the target state to finish the process (step 2). Source and target state can be
identical. An internal transition is also created via the context menu. The transition appears at the
top of the state symbol.

Depending on source and target state the trigger text of a new transition is filled with standard
values for event, condition and action.

 3.2.8.2 Edit transitions

The trigger text of a transition can be changed by editing the according text field. The source and
target state can be changed by dragging the according end of the transition to another object.

When moving the cursor over the text field containing the trigger text, the right border is colored
blue (see picture 16).

SU-statemodeler 2.5/2.1.4
Christian Pauli

16

Picture 13: create new transition (step 2)

Picture 15: point inserted

Picture 14: internal transition

After clicking once on the blue area the text field is collapsed. The trigger text remains unchanged
and is completely shown in the tooltip (see picture 17). The trigger text can be expanded by clicking
once on the blue area on the right side.

A transition can be segmented by inserting points. This is done by a double-click on a transition.

Collapsing the trigger text and inserting points do not influence the semantic of a transition. They
only change its visual style and can make a statechart more neatly.

 3.2.9 Deleting objects

Every object can be deleted. If states are deleted, then its child states and all connected transitions
will be deleted, too. When deleting a point of a transition (→ 3.2.8.2), then only the point itself is
deleted, not the whole transition.

To delete an object the user has to open the context menu of it and choose the menu item remove
(→ picture 18).

SU-statemodeler 2.5/2.1.4
Christian Pauli

17

Picture 16: expanded trigger text

Picture 17: collapsed trigger text

 3.2.10 Copy and paste

The editor facilitates copying and pasting of states and its linked transitions. Thus states and other
objects can be duplicated. If a state with child states is duplicated, the child states are duplicated,
too. When several states are duplicated at once, transition between these states are duplicated, too. A
transition alone cannot be duplicated. Duplication consists of copy and paste. The copy operation
can be called via context menu for state, the paste operation for states and the background (→
pictures 18 and 19).

SU-statemodeler 2.5/2.1.4
Christian Pauli

18

Picture 18: delete a state

SU-statemodeler 2.5/2.1.4
Christian Pauli

19

Picture 19: copy a state

Picture 20: paste a state

Copying means saving the chosen component temporarily in memory and has no further effect until
the copied component is pasted.

 3.2.11 Making changes undone

In practice unintended operation steps can happen. For this reason the editor offers the opportunity
to make single operation steps undone, e. g. restore an unintentionally deleted state. A single
operation step can be made undone with the keystroke combination CTRL+Z. With CTRL-Y an
undone operation can be carried out again.

 3.2.12 Comments

With comments the user can enrich the model with additional information. Comments do not
influence semantics of the model. Comments are created via the menu item comment of the context
menu (→ picture 18). They can be linked to any object in the editor, even to more than one.

 3.3 Expressions

 3.3.1 General

Expressions are used to specify conditions and actions. A condition is a logical expression which is
true or false. This can simply be the value of a variable, but also complex logical expressions
consisting of operators, variables and constant values are possible.

Some examples for expressions:

condition variable

value=45

value=“string“

var1=var2 & var1 > var3

function(34)+6=67 | value=0

var1:=89+var2 assignment

SU-statemodeler 2.5/2.1.4
Christian Pauli

20

Picture 21: comment

boolean

 3.3.2 Operators

The following operators are supported by SU-statemodeler:

operators examples

- + sign -8, +7.9

! negation !var

* / multiplication, division 6*7

+ - addition, subtraction 6+7, 2-1

= != equal, not equal 5=5, 6!=7

> < >= <= lesser, greater 6<7, var>=0

& logical and a & b

| logical or a | b

:= assignment var:=7, var:=null

The given order of operators is the order in which they are evaluated within an expression.
Brackets can influence this order. The expression null represents a Null-pointer.

 3.3.3 Data types

All variables and functions that are used within expressions are dynamically typed. The type of
constant values, as 3 or “string“, is automatically determined.

The application internally distinguishes the following data types:
 short
 integer
 long
 float
 double
 character e. g. 'g', '6'
 string e. g. “123 abc”
 object abstract data types or arrays

All numbers are signed. A constant value without point is mapped to integer, a floating point
number to double. Everything that is not a simple data type or a string is mapped to an object.

 3.4 Error recognition

SU-statemodeler recognizes certain errors in statecharts. To each error a short description is shown
in a separated panel. If a statechart contains errors, no code can be generated from it.

 3.4.1 Syntax errors

If a name of trigger does not comply with the syntax rules (→ 2.5.1), the corresponding text is
displayed in red color.

SU-statemodeler 2.5/2.1.4
Christian Pauli

21

Picture 22: syntax error

signed floating point numbers

signed numbers

In picture 22 the name of the state is syntactically wrong, because it contains a blank character.

 3.4.2 Logical errors

Logical errors are due to ambiguous statements or invalid target states for transitions. An example
for an ambiguous statement is, when a parent state contains two initial states (within one region).
Only one initial state per state and region is allowed. SU-statemodeler is not able to decide which
initial state to use when more than one is given.

Another logical error are doubly handled events. If several transitions with the same source state are
triggered by the same event, it is not clear which transition is triggered when the event occurs.

If conditions are given and if they are different, this is not an error (even if these conditions are
semantically equivalent).

When using forks the target states of the outgoing transitions must be in different regions of a state.
This also applies to the source states of a join. A violation of these rules is recognized and shown by
SU-statemodeler.

Picture 25 shows a correctly used fork. The following picture shows an incorrectly used fork,
because one target state of the transition (new_State_1) is not a child state of new_state and
hence in the wrong region.

SU-statemodeler 2.5/2.1.4
Christian Pauli

22

Picture 24: doubly handled event

Picture 23: two initial states

In an editor window a state name must not occur more than once. If this rule is violated, all
occurrences of the name are displayed red.

 3.5 Localization

The editor supports English and German. The language is read from the operating system settings
and is accordingly set. When another language as the mentioned languages above is set, then
English is taken as the default.

This manual is only available in English.

SU-statemodeler 2.5/2.1.4
Christian Pauli

23

Picture 25: fork correctly used

Picture 26: fork incorrectly used

 4 Code-generator

 4.1 Overview

This chapter gives a short introduction about the code-generator in SU-statemodeler. A simple
example model is introduced. In reference to that model it is explained how user-defined code can
access the generated code and how to make user-defined additions to the generated code.

The code-generator translates the model, that was created with the editor, into executable code. By
now SU-statemodeler can generate code for the following programming languages:

 Java
 C++
 C#

Code can only be generated if SU-statemodeler does not recognize any error in the model.

 4.2 Example model

Picture 27 shows a simple model for a state machine having three states. For now it is not important
if this system makes sense, it only is to demonstrate the general approach.

The particular parts of the model summarized:

 3 states Off, Starting, On

 1 variable deviceOn

 2 functions setLigthOn(deviceOn: var), start()

 1 activity doSomething

 4 events on, off, entry, do

The model does not contain any syntactical error and SU-statemodeler will not recognize any
logical error. Hence SU-statemodeler can generate code from it.

 4.3 General characteristics

The design of the generated code follows the design pattern STATE1. For every model an abstract

1 https://en.wikipedia.org/wiki/State_pattern

SU-statemodeler 2.5/2.1.4
Christian Pauli

24

Picture 27: example model

class State is generated. This class does not implement a concrete state, but it determines the
interface and the dependencies for classes implementing a state. From now on a class implementing
a state is referred to as a state.

Every class implementing a concrete state must be derived from State. This applies here for the
three classes in the package basestate. Every class implements a state, the name of the class is
derived from the state's name, led by AtomicState_ or other prefixes. That prefix depends on the
kind of state (e. g. for complex states the prefix ComplexState_ is used). Here the class
AtomicState_On implements the state On.
Furthermore the class BaseState is (always) generated. This class implements the state representing
the whole model (respectively state machine). This means that the whole state machine is regarded
as a state itself. The BaseState is the interface of the state machine to other components. The state
machine is initialized by creating an instance of BaseState. Then the state machine is activated by
invoking the method entry(). If there is no initial state, then the user has to set it. Otherwise the
invocation of entry() has no effect. Events are triggered by invoking the according methods
beginning with EVENT_. Example: for triggering the event on, user-defined code has to invoke the
method EVENT_on(). Then the state changes to Starting.
A parent state holds references to its child states, one reference per region. The state implemented
by BaseState has one region with three potential child states (in package statemachine::basestate).
Every state has a reference to its parent state and to BaseState.

 4.3.1 Variables and types

All variables used in the model (here only deviceOn) are stored in an instance of the class

SU-statemodeler 2.5/2.1.4
Christian Pauli

25

Picture 28: class model of generated code

VariableContainer. The name of the attributes corresponds to the variable names, only the prefix
VAR_ is added. All variables in SU-statemodeler are dynamically typed (→ 3.3.3). When
compiling expressions (in the model) to code of a programming language that is statically typed
(such as Java or C#), a basic type is used to implement a variable. Furthermore reflection is used to
determine the type when applying operations on a variable. If the type of a variable cannot be
processed by an operation, then an exception will be thrown.
Example: z:=u+4 is a valid expression as it can be used with transitions. The operation + is only
applicable for numbers (double, integer, short, …). The operation cannot be applied, if u holds a
string or an object of another type.

 4.3.2 Functions and Activities

Functions and activities are only declared in SU-statemodeler, an implementation must be provided
by the user. All functions and activities are stored in an instance of EffectContainer. This instance is
statically referenced by State. A function is basically a pointer to a function, which is differently
implemented by the supported programming languages. A function always returns a value, which
can be null (0). It always has the parameter state. It is handed over by the state machine and is the
currently active state. Further parameters correspond to the parameter list of the function
declaration. These parameters are represented by a static array.
An activity consists of several actions (→ 2.4). The implemented structure of activities is shown
below.

The internal structure of an activity is separated from its execution. An activity is implemented by
the class Activity. Actions are stored in the container-class ActionContainer. It has the attribute
sleep, an integer value used for waiting operations between actions. An activity can be executed
more than once at the same time. The execution is implemented by the class ActivityInstance. It
provides all functions to control the execution of an activity.
Implementing and adding actions to the activity is all that needs to be done by the user. This is done
by implementing derivatives of Action and adding them via addAction(a: Action) to the
activity. The code that is executed within the method execute() cannot be interrupted. Only wait
actions can be interrupted. They wait a specified time or until they are interrupted, e. g. by an event.
A wait action is added with the method addInterruptibleAction(i: long). The

SU-statemodeler 2.5/2.1.4
Christian Pauli

26

Picture 29: structure of activities

parameter i is the time to wait in milliseconds. Of course an action can wait without being
interrupted, but this has to be implemented by the user.
The different supported programming languages pursue slightly different approaches for
implementing actions. These approaches are described in the following chapters.

 4.3.3 Listening to changes

It is possible to observe the behavior of a state machine. This is done through an observer. This
observer must implement the interface StateListener and can be registered with the method
addStateListener(sl: StateListener) of the class State.

The methods of the StateListener-interface in detail:

stateEntered(s: State) Invoked, when the state s is activated. It is
invoked after the entry-event was handled.

stateExited(s: State) Invoked, when the state s is deactivated. It is
invoked after the exit-event was handled.

eventHandled(s: State, ev: String) Invoked, when an event ev is handled by the
state s. It is invoked after the event was handled.

With a StateListener it is possible to influence the behavior of the state machine without changing
the corresponding model. Other purposes can be debugging or logging.

 4.4 Java

 4.4.1 General

The generated code complies with Java 1.6 and later. All variables are represented by the type
java.lang.Object. A function implements the interface Function. This interface only declares the
method public Object execute(State s, Object... vars). The parameter vars
corresponds to the parameter list of the function declaration. If no parameter is declared then this
array is null.

 4.4.2 Implementing functions

To implement a function the user has to initialize the corresponding variables in the static reference
effects of the class State with an implementation of the interface Function. Listing 1 shows an

SU-statemodeler 2.5/2.1.4
Christian Pauli

27

Picture 30: state listener

example for an implementation using an anonymous class.

 4.4.3 Persisting states

The Java code-generator comprises the function persist for persisting states into an XML-
document. An (optional) string-parameter refers to the name of the state machine. This value is
assigned to an attribute name of the root element. Otherwise the value is empty.

The function returns an instance of org.w3c.dom.Document or an exception2 in case of error.
It never returns null.

The function may be replaced by a user-defined function (→ 4.4.2).

 4.4.4 Implementing actions

To implement an action the user has to define a class implementing the interface Action. Then an
instance of it is added to the activity. Listing 2 shows an example.

 4.5 C++

 4.5.1 General

The generated code complies with C++98 and later. All variables are represented as pointers to an
instance of the class Object. This class is defined in the header file Object.h, a generated file. A
simple runtime library (RTL) manages all instances of Object stored in variables of the generated

2 javax.xml.parsers.ParserConfigurationException

SU-statemodeler 2.5/2.1.4
Christian Pauli

28

State.effects.FUNCTION_setLightOn=new Function(){
@Override
public Object execute(State s,Object... vars){

//do something here
return null;

}
};

Listing 1: function in Java

Action a=new Action(){
@Override
public void execute(){

//do something here
}

};
State.effects.ACTIVITY_doSomething.addAction(a);

Listing 2: action in Java

Picture 31: function persist

code. If an instance is not longer referenced by a variable, it is deleted from memory. This is
achieved by reference counting (member ref in Object). Attention: if the user wants to keep a
variable that is managed by the RTL, he needs to reference it from a variable and increment the
reference counter (at least) once. Be careful with the reference counter: when it is incorrectly set, a
memory leak can be the consequence.

 4.5.2 Type system

The class Object is the base type for all supported types. An instance of Object cannot be created
because the constructor is pure virtual. Every type has a positive integer value as unique identifier.
The type of a variable can be queried at runtime by invoking the method getType().

The class Atom represents all simple types such as int or void* by wrapping them. With
getValue() the typed value of the object is returned. Atom is a template class, the template
parameters are the name of the simple type and the type identifier. For all supported types the
identifiers are already defined as constant class members in Object. In picture 32 the supported data
types are shown. The class String wraps an instance of std:string from the C++ standard
library.

The user can extend the type system by deriving new classes from Object or Atom. To create a
simple wrapper for pointers to int (int*) the following needs to be done:

SU-statemodeler 2.5/2.1.4
Christian Pauli

29

Picture 32: type system C++

The constructor and the method getType() must be implemented. The method equals need not
but should be implemented. Here a more sophisticated comparison is implemented by overriding
the equals-method.

There is another way to implement this type:

This implementation is semantically identical to the one in listing 3, but much shorter. Atom already
implements the desired comparison behavior, only the constructor must be implemented.

The first solution should be used with more complex types, e. g. when there is more than one
attribute member. For simple types the second solution is the more appropriate one.

 4.5.3 Object comparisons

Two objects can be compared with the method equals(Object* o) in the class Object. The
implementation is very simple: the method only returns true when the given object is identical to the
current object (i. e. o==this). This is not always the intended behavior so that the user might
override this method in derived types. Also Atom only implements a very basic comparison

SU-statemodeler 2.5/2.1.4
Christian Pauli

30

//define a type derived from Object
class MyType :public Object{
private:

int* i;

public:
MyType(int* u){

i = u;
}

int getType(){
return 10;//new type identifier

}

bool equals(Object* o){
if(o!=NULL && o->getType() == getType()){

MyType* other = static_cast<MyType*>(o);
return other->i == this->i;

}
return false;

}
};

Listing 3: type implementation in C++ (variant 1)

//define a type derived from Atom
class MyType :public Atom<int*,10>{
public:

MyType(int* i):Atom(i){
}

};

Listing 4: type implementation in C++ (variant 2)

algorithm with the equals-method: the type and the value must be identical to make two objects
equal.

More sophisticated comparisons for number values (double, float, short, …) are implemented by
methods of the class Operations. By these methods even values as 5 and 5.0 are regarded as equal,
while the equals-method of Atom or Object do not.

 4.5.4 Implementing functions

All functions a derivatives of the class Function implementing the method Object*
execute(State* s, int lenght, ...). The first parameter is the current state, the second the
number of the following parameters, which are actually of the type Object*. The header stdarg.h
must be available, because it contains functions to obtain the parameters. Listing 5 shows how to do
this.

To obtain the parameters the parameter list has to be initialized with the function va_start.
Afterwards the parameters can be obtained via va_arg(va_list list, type). These and
other functions are declared in the header stdarg.h. A more detailed description for that can be
found under http://www.cplusplus.com/reference/cstdarg.

Given parameters might be null. A check for that misses in listing 5, but should be done. Unless
the values of parameters are not used somewhere else in the code, they should be freed before the
function returns. Otherwise a memory leak might occur. The internal operations of SU-statemodeler

SU-statemodeler 2.5/2.1.4
Christian Pauli

31

//define a function class derived from Function
class MyFunction : public Function{

public:
Object* execute(State* s,int lenght,...){

va_list vars;
va_start(vars, lenght);
Object* parameter;
for (int a = 0; a < lenght; a++){

parameter=va_arg(vars, Object*);
//type checks
if(parameter->getType() == Object::STRING){

//cast to type
String* str = static_cast<String*>(parameter);
delete str;

}else if(parameter->getType() == Object::INTEGER){
//do something
Operations::deleteObject(parameter);

}
}
va_end(vars);
return NULL;

}
};

[...]

//initialize and assign the function
State::effects->FUNCTION_setLightOn = new MyFunction();

Listing 5: function in C++

http://www.cplusplus.com/reference/cstdarg

as (+, - or /) do that automatically. To free instances of Object, the method
Operations::deleteObject(Object*) is recommended. It frees the object unless its
reference counter is not zero. The invocation of the operator delete is possible, but not
recommended. If instances of Object are used by user-defined code, the reference counter should be
incremented once. Otherwise internal operations of SU-statemodeler will free them.

 4.5.5 Implementing actions

The implementation of an action in C++ is derived from the class Action. Its pure virtual method
execute() must be implemented. Then an instance of the class MyAction is added to the activity.

 4.5.6 Compiling the code

The generated code can be compiled on Linux and Windows, for 32 and 64 bit. Given the
appropriate libraries and compilers also other platforms might be possible. Cross-compiling is not
regarded here.

 4.5.6.1 Compiling on Windows

The compilation of the generated code was successfully tested on Windows 7 with the g++-
compiler (version 4.8.1) and MS Visual Studio 2008. Pre-processing must be activated. When
compiling the code for Windows for 64 bit, the macro WIN64 or _WIN64 must be defined. For 32
bit, the macro WIN32 or _WIN32 must be defined. Usually no additional libraries need to be
configured. The header windows.h must be available. Using other compilers might be possible, but
this was not tested.

 4.5.6.2 Compiling on Linux

The compilation of the generated code was successfully tested on Ubuntu 12.04 (32 bit) with the g+
+-compiler (version 4.6.3). Pre-processing must be activated. The macros mentioned in chapter
 4.5.6.1 must not be defined, otherwise the compilation will (probably) fail. The code uses POSIX-
threads3 as threading implementation. For this reason the header pthread.h must be available. The
compiler also needs to know the corresponding library. That can be done with the parameter -
lpthread (or -pthread) when invoking the compiler. Using other compilers might be possible, but
this was not tested.

3 see http://man7.org/linux/man-pages/man7/pthreads.7.html

SU-statemodeler 2.5/2.1.4
Christian Pauli

32

class MyAction:public Action{
public:

void execute(){
//do something here

}
};

[...]

State::effects->ACTIVITY_doSomething->addAction(new MyAction());

Listing 6: action in C++

http://man7.org/linux/man-pages/man7/pthreads.7.html

 4.5.7 Code variants

SU-statemodeler can generate C++-code in two variants. Both variants comply with the approach as
mentioned in 4.3 and are very similar.

Background: There might be problems when compiling various source files with the Visual Studio
C++-compiler from Microsoft. When there are two source files having the same name, this is not a
problem as long as they are in different directories. SU-statemodeler ensures exactly that when
there are two states with the same name in a model (which leads to according source files). The
Visual Studio C++-compiler from Microsoft cannot cope with this situation. The result is a linker
error (LNK4042). A possible solution is to change the directory for obj-files generated by the
compiler. Another solution is to tell SU-statemodeler to give all source files a unique name. This is
done by a variant.

The first variant is referred to as GNU, because it is designed for the g++-compiler. Different source
files can have the same name (in different directories). The second variant of the C++ code-
generator is referred to as MS, because it is designed for the Visual Studio C++-compiler from
Microsoft. Every source file has a unique name. This is achieved by appending an id to the name of
the source file (e. g. Atomic_State_Off_id2.cpp). Of course this code can also be compiled with the
g++-compiler.

 4.5.8 Arduino4 generator

Since version 1.0.15 (only Eclipse) there is a C++-generator available generating code for the
Arduino-platform. The generator does not support activities, due to a lack of threading-support of
the platform. The generator assumes the existence of a header Arduino.h that contains basic
functions getting the generated code to work. The generated code is a little bit different to the code
generated by the normal C++-generator. To save memory some issues are solved simplier. Therefor
some flexibility of the design is lost. The generated code comprises its own simple implementation
for dynamic lists and strings. Apart from that the generator works as described above and is very
similar to the code generated by the normal C++-generator.

To get

 4.6 C#

 4.6.1 General

The generated code complies with .NET 2.0 and later. Compilation was successfully tested with
Mono (version 2.8.6) and MS Visual Studio 2008. All variables are represented by the type
System.Object. A function is represented by the delegate public delegate object
Function(State s, params object[] vars), an interface is not used. The parameter vars
corresponds to the parameter list of the function declaration. If no parameter is declared then this
array is null.

 4.6.2 Implementing functions

To implement a function the user has to initialize the corresponding variables in the static reference
effects of the class State with an implementation for the delegate Function. The following example
uses a lambda expression for that.

4 Arduino is a trademark of Arduino AG

SU-statemodeler 2.5/2.1.4
Christian Pauli

33

 4.6.3 Implementing actions

An action in C# is a simple delegate. It can be implemented with a lambda expression as shown in
the following listing.

SU-statemodeler 2.5/2.1.4
Christian Pauli

34

State.effects.FUNCTION_setLightOn=(State st,object[] vars)=>{
//do something here
return null;

};

Listing 7: function in C#

State.effects.ACTIVITY_doSomething.addAction(()=>{
//do something here

});

Listing 8: action in C#

 5 Products
SU-statemodeler can be used as a standalone editor or as a plug-in for Eclipse. The standalone
editor only offers a simple user interface and the key features. The more comfortable way to use
SU-statemodeler is using the plug-in for Eclipse.

 5.1 Standalone editor

 5.1.1 Overview

The standalone editor offers a simple user interface. Beginning at the top of the window the user
interface consists of:

 menu bar
 button bar
 editor panel
 error panel

The menu bar offers some features which are usually less frequently used, e. g. open the manual.
Most features are available via buttons of the button bar. Every button offers a short help when
moving the cursor on it. The editor panel contains the editor for UML-statecharts and is used as

SU-statemodeler 2.5/2.1.4
Christian Pauli

35

Picture 33: standalone editor

described in chapter 3 . The panel at the bottom shows errors as they are recognized by SU-
statemodeler in a table. For every error the related component and a short description are shown. In
the model as shown in picture 33 the name of the state Impo rted_1 does not comply with the
syntax rules.

The title bar of the application shows the path of the currently edited file. The appearance of the
application may differ slightly on various platforms. The graphical representation of the objects in
the editor can be changed concerning the colors.

 5.1.2 System requirements

To run the standalone editor, a Java runtime (version at least 1.7) must be installed. No further
libraries are required. The application was successfully tested on Windows 7, 10 and Ubuntu
(versions greater or equal to 16.04). The application is launched via a double-click on the Java-
archive or the command java -jar statemodeler.jar [model-file].

 5.1.3 Obtaining the software

The software consists of one Java-archive which can be downloaded at www.christianpauli.de. An
installation is not necessary.

 5.2 Eclipse plug-in

 5.2.1 Overview

This plug-in offers the user all features of the standalone editor and additional features. These are:

 integration of model files in workspace
 saving of code code configurations
 exporting images in common image formats
 dialog for creating new model files
 property viewer for model objects

Picture 34 gives an overview over the plug-in. The plug-in needs a Java runtime (version at least
1.7) and was successfully tested on Windows XP, 7 and Ubuntu 12.04. It needs Eclipse with version
at least 4.3. Lower versions might work, but are not officially supported.

SU-statemodeler 2.5/2.1.4
Christian Pauli

36

http://www.christianpauli.de/

 5.2.2 Model files

All model files are decorated with the SU-statemodeler icon, so that they can easily be found in the
package explorer. Model files can be integrated into every kind of project in Eclipse.

 5.2.2.1 Creating a model file

To create a model file open the menu item New / Other.... There choose SU-statemodeler file under
SU-statemodeler. Then a file name and a directory (relative to the project directory) can be
specified for the new model file.

 5.2.2.2 Opening a model file

Opening a model file is usually achieved by a double-click on it, because file type smf is bound to
the editor of SU-statemodeler. If this is not the case, then open the context menu of the model file
with a single right click on it and choose Open With / SU-statemodeler. If you do not use smf as file
ending for model files, this step might always be necessary. Alternatively it is possible to open and
edit model files with a text editor, what is not recommended.

 5.2.3 Color preferences

It is possible to change several color-preferences of the editor. The background-color of states and
the font-color can be set to an arbitrary color. Furthermore anti-aliasing can be activated for a

SU-statemodeler 2.5/2.1.4
Christian Pauli

37

Picture 34: Eclipse plug-in

prettier presentation of models.

The dialog for changing the settings is accessible via Preferences / SU-statemodeler.

 5.2.4 Exporting images

A model can be exported as an image with the image exporter. The image exporter supports
common image formats as png, bmp or jpg. The image exporter is opened via File / Export. Then
image exporter can be found under the item SU-statemodeler. After that a file format and name can
be chosen.

SU-statemodeler 2.5/2.1.4
Christian Pauli

38

Picture 35: Color-preferences

 5.2.5 Generating code

Code is generated via the menu Generate code in the menu bar (→ picture 37). Code can only be
generated if a model file is opened and the corresponding editor is activated. Otherwise the
corresponding menu is disabled. When clicking on a menu item a dialog as shown in picture 38
appears. There a name and a directory can be specified, both together is a build configuration. The
name is to identify the new build configuration. Afterward this build configuration is stored under
the given name and can be carried out again with only one click. Already stored build
configurations are visible in the menu.

If the name is left blank, then this build configuration is not stored. If an already chosen name is
given, then the old build configuration is overwritten. Build configurations are saved in the
workspace and hence bound to it5. They can be deleted individually or all at once by clicking the
menu item Remove all configurations (→ picture 39)

5 stored in XML-file at .metadata\.plugins\com.statemodeler.plugin

SU-statemodeler 2.5/2.1.4
Christian Pauli

39

Picture 36: Image exporter

When generating code for C++ the variant as described in chapter 4.5.7 can be chosen (default is
GNU). Furthermore a default header included in every generated source file can be chosen.
When clicking the right button shown in picture 40, then the lastly invoked build configuration is
repeated again. This is a shortcut. The also available drop-down menu is the same as in picture 37.

SU-statemodeler 2.5/2.1.4
Christian Pauli

40

Picture 37: menu generate code

Picture 38: dialog generate code

Picture 39: saved build configuration

 5.2.6 Error view

All errors are listed in the SU-statemodeler Error Log. This view can be opened under Window /
Show View / Other.... Then choose SU-statemodeler Error Log under SU-statemodeler. With a
double-click on a list-item the editor jumps the corresponding object.

 5.2.7 Model properties

Eclipse offers a property view. This view is often not visible by default but can be opened via the
menu bar. This property view shows all important properties for objects in a model. Picture 42
shows the properties for the state new_State.

SU-statemodeler 2.5/2.1.4
Christian Pauli

41

Picture 42: Property view

Picture 41: Error log

Picture 40: repeat last build

 5.2.8 Obtaining help

The left button shown in picture 40 shows information about the SU-statemodeler plug-in. A
manual can be opened via SU-statemodeler / Manual.

 5.2.9 Installing the plug-in

The plug-in can be installed via the Eclipse marketplace or the update-site
http://christianpauli.de/su-statemodeler.

SU-statemodeler 2.5/2.1.4
Christian Pauli

42

http://christianpauli.de/su-statemodeler

List of pictures
Picture 1: activity..7
Picture 2: cyclic activity...7
Picture 3: activity..7
Picture 4: regions..9
Picture 5: external view State_3...9
Picture 6: internal view State_3..10
Picture 7: import cycle..11
Picture 8: editor window with states..12
Picture 9: context menu..13
Picture 10: resizing an object...14
Picture 11: import a model...15
Picture 12: create new transition (step 1)...15
Picture 13: create new transition (step 2)...16
Picture 14: internal transition...16
Picture 15: point inserted..16
Picture 16: expanded trigger text..17
Picture 17: collapsed trigger text..17
Picture 18: delete a state...18
Picture 19: copy a state...19
Picture 20: paste a state..19
Picture 21: comment...20
Picture 22: syntax error..21
Picture 23: two initial states...22
Picture 24: doubly handled event...22
Picture 25: fork correctly used...23
Picture 26: fork incorrectly used..23
Picture 27: example model...24
Picture 28: class model of generated code..25
Picture 29: structure of activities..26
Picture 30: state listener..27
Picture 31: function persist...28
Picture 32: type system C++...29
Picture 33: standalone editor..35
Picture 34: Eclipse plug-in...37
Picture 35: Color-preferences...38
Picture 36: Image exporter...39
Picture 37: menu generate code..40
Picture 38: dialog generate code...40
Picture 39: saved build configuration...40
Picture 40: repeat last build..41
Picture 41: Error log...41
Picture 42: Property view...41

SU-statemodeler 2.5/2.1.4
Christian Pauli

43

Listings
Listing 1: function in Java..28
Listing 2: action in Java..28
Listing 3: type implementation in C++ (variant 1)...30
Listing 4: type implementation in C++ (variant 2)...30
Listing 5: function in C++..31
Listing 6: action in C++..32
Listing 7: function in C#...34
Listing 8: action in C#..34

SU-statemodeler 2.5/2.1.4
Christian Pauli

44

Imprint

Author Christian Pauli

Date 3 March 2023

Contact Mail: christian.pauli@christianpauli.de
Phone: +49 8452 7340689

SU-statemodeler 2.5/2.1.4
Christian Pauli

45

mailto:christian.pauli@christianpauli.de

	1 General
	1.1 Overview
	1.2 License
	1.3 Versions
	1.4 Contact

	2 Basics
	2.1 States
	2.2 Pseudo states
	2.3 Transitions
	2.3.1 Regular transitions
	2.3.2 Internal transitions
	2.3.3 Trigger text

	2.4 Activities and actions
	2.4.1 General
	2.4.2 Transition behavior

	2.5 States
	2.5.1 Naming rules
	2.5.2 Regions

	2.6 Entry and exit points
	2.7 Model modularization and reuse

	3 Editor
	3.1 Overview
	3.2 Using the editor
	3.2.1 Context menus
	3.2.2 Creating objects
	3.2.3 Resizing objects
	3.2.4 Moving objects
	3.2.5 Editing text
	3.2.6 Importing models
	3.2.7 Complex states
	3.2.8 Transitions
	3.2.8.1 Create transitions
	3.2.8.2 Edit transitions

	3.2.9 Deleting objects
	3.2.10 Copy and paste
	3.2.11 Making changes undone
	3.2.12 Comments

	3.3 Expressions
	3.3.1 General
	3.3.2 Operators
	3.3.3 Data types

	3.4 Error recognition
	3.4.1 Syntax errors
	3.4.2 Logical errors

	3.5 Localization

	4 Code-generator
	4.1 Overview
	4.2 Example model
	4.3 General characteristics
	4.3.1 Variables and types
	4.3.2 Functions and Activities
	4.3.3 Listening to changes

	4.4 Java
	4.4.1 General
	4.4.2 Implementing functions
	4.4.3 Persisting states
	4.4.4 Implementing actions

	4.5 C++
	4.5.1 General
	4.5.2 Type system
	4.5.3 Object comparisons
	4.5.4 Implementing functions
	4.5.5 Implementing actions
	4.5.6 Compiling the code
	4.5.6.1 Compiling on Windows
	4.5.6.2 Compiling on Linux

	4.5.7 Code variants
	4.5.8 Arduino generator

	4.6 C#
	4.6.1 General
	4.6.2 Implementing functions
	4.6.3 Implementing actions

	5 Products
	5.1 Standalone editor
	5.1.1 Overview
	5.1.2 System requirements
	5.1.3 Obtaining the software

	5.2 Eclipse plug-in
	5.2.1 Overview
	5.2.2 Model files
	5.2.2.1 Creating a model file
	5.2.2.2 Opening a model file

	5.2.3 Color preferences
	5.2.4 Exporting images
	5.2.5 Generating code
	5.2.6 Error view
	5.2.7 Model properties
	5.2.8 Obtaining help
	5.2.9 Installing the plug-in

